
Evolution of Learning Rules for Supervised Tasks

II: Hard Learning Problems

Ibrahim KUSCU

Cognitive and Computing Sciences

University of Sussex

Brighton BN1 9QH

Email: ibrahim@cogs.susx.ac.uk

November 10, 1995

Abstract

Recent experiments with a genetic based encoding schema are pre-

sented as a potentially powerful tool to discover learning rules by means

of evolution. The representation used is similar to the one used in Genetic

Programming

the input variable(s)". This means that there is a direct correlation between

particular input values and particular output values.

However, sometimes the rule may not refer to particular values of variables.

Rather it may refer to possible 'relationships' among input values. It has been

shown by Clark and Thornton [2] that learning behaviors based on some training

sets which take into account the relationship among values of the input variables

can be extremely di�cult (named as type-2 learning problems). In one of the

studies [10] well-known learning algorithms such as ID3, back-propagation and

classi�er systems are tested on a type-2 problem and all showed poor results.

In a previous paper [6] an encoding schema has been presented and tested

on several simple supervised tasks. Combined with genetic algorithms it can

successfully produce evolution of learning rules. Rather than searching for a

general learning algorithm (as in the work of Chalmers [1]), the aim is to see

whether evolution would produce a speci�c learning rule for the problem in hand.

Although the representation schema is very similar to the one used by of Koza [5]

in Genetic Programming (GP) paradigm, introducing prior knowledge into the

representation of initial solutions using problem speci�c functions is minimal, if

any at all. The main motivation to exclude problem speci�c functions is to see

whether evolution can produce (i.e. discover) a learning rule which can, in some

ways, represent those functions. In this strategy potential learning rules are

encoded as random mathematical expressions at variable lengths and only four

functions is allowed: plus, minus, multiplication and protected division. The

terminal units can be random numbers and random variables. The variables are

to be instantiated to input values of training set in a typical supervised learning.

By using LISP's "EVAL" statement, the expressions are evaluated to certain

numbers. This value is then mapped to a value in the range of value of target

outputs through a squashing function and is used to determine the success of a

potential rule in correctly learning the supervised task.

In this paper several experiments where the model is applied to hard learning

problems such as three Monk's problems and parity problems will be presented.

In the sections that follow, I will �rst describe the Three Monk's problems.

Next, I will introduce Genetic Programming (GP) in relation to the Monks

problems. The following section contains the representation strategy and the

process of applying genetic algorithms. Then the experiments and the results

will be presented. Finally, I will conclude with a discussion and future research

possibilities using the genetic based encoding schema.

2 Three MONK's Problems

The three MONK's problems are used to compare the performance of di�er-

ent symbolic and non-symbolic learning techniques [11] including AQ17-DCI,

AQ17-FCLS, AQ14-NT, AQ15-GA, Assistant Professional, mFOIL, ID5R-hat,

TDIDT, ID3, AQR, CN2, CLASSWEB, ECOBVEB, PRISM, Backpropagation

2

and Cascade Correlation.

MONKS's problems involve classi�cation of robots which are described by

six di�erent attributes. The attributes and their possible values are as follows:

ATTRIBUTES VALUES

------------- ----------------------------

head_shape round, square, octagon

body_shape round, square, octagon

is_smiling yes, no

holding sword, balloon, flag

jacket_color red, yellow, green. blue

has_tie yes, no

Each of the three problem requires learning of a binary classi�cation task.

Whether the robot belongs to a particular class or not is decided based on the

following rules:

Problem M1: (headshape=bodyshape) or (jacketcolor= red)

Problem M2: Exactly two of the six attributes have their first

value.

Problem M3: (jacketcolor = green and holding = sword) or

(jacketcolor = (not blue) and bodyshape = (not octagon))

The most di�cult one among these problems is the second problem since it

refers to a complex combination of di�erent attribute values and is very similar

to parity problems. Problem one can be described by standard disjunctive nor-

mal form (DNF) and may easily be learned by all symbolic learning algorithms

such as AQ and Decision Trees. Finally, problem three is in DNF form but aims

to evaluate the algorithms under the presence of noise. The training set for this

problem contains 5 percent misclassi�cation.

The results of the comparison have shown that only Backpropagation, Back-

propagation with decay, cascade correlation and AQ17-DCI had 100 percent

2.0.1 Training and Testing Sets

The training and testing sets used for the experiment in this paper are the same

as those used by Thrun in the performance comparison experiments. In these

experiments two di�erent sets are used. The �rst set adapted an original coding

for the problems where each of the attributes would have one of the following

values:

attribute#1 : {1, 2, 3}

attribute#2 : {1, 2, 3}

attribute#3 : {1, 2}

attribute#4 : {1, 2, 3}

attribute#5 : {1, 2, 3, 4}

attribute#6 : {1, 2}

Thus the rules describing the true cases can be reformulated as below:

MONK-1:

(attribute_1=attribute_2) or (attribute_5=1)

MONK-2:

(attribute_n = 1)

for EXACTLY TWO choices of n (n {1,2,...,6})

MONK-3:

(attribute_5 = 3 and attribute_4 = 1) or

(attribute_5 != 4 and attribute_2 != 3)

The second set of training and testing cases for the problems are the conver-

sion of the original coding into the binary coding. Obviously, this has a direct

e�ect on the rules describing the true cases and the formulation of the prob-

lems. The number of input variables increases from 6 to 17 since each possible

value of the attributes is represented as 3 digit binary numbers where each digit

represents the presence of a speci�c value of the attributes.

2.1 Genetic Programming

In the genetic Programming Paradigm of Koza [5] problems of Arti�cial Intel-

ligence (AI) are viewed as the discovery of computer programs which produce

desired outputs for particular inputs. The computer programs can be an ex-

pression, formula, plan, control strategy, decision tree or a model depending on

the sort of AI problem.

He claims that solving AI problems requires searching the space of all pos-

sible computer programs for the �ttest individual computer program. Genetic

Programming (GP) is the method of searching for this �ttest individual com-

puter program based on Darwinian natural selection and genetic operations.

4

Genetic programming steps, as in the application of conventional Genetic

Algorithms (GA), involve initialisation of random population of computer pro-

grams and for a number of generation, evaluating the �tness of the individual

programs and applying genetic operators.

One of the important feature of the GP is that it uses variable length of

genome (i.e. computer programs) which re
ects hierarchical and dynamical

aspects of the potential solutions to a particular problem. Since the shape and

the size of the solution to a problem may not be known in advance, speci�cation

or restriction of the potential solutions to certain format may limit the search

space so that it may be impossible to reach a solution. By moving from �xed

length genotype to the adaptation of variable length genotype, GP improves the

capabilities of conventional GA.

In GP the genotype (i.e. computer programs) is composed of a set of func-

tions and terminal units appropriate to the problem domain. The set of ter-

minals are either some variable atoms or some constants. The set of functions

would include arithmetic operations, mathematical functions, programming op-

erations, boolean operations or any other domain speci�c functions.

typical GP practice would favor using XOR function since it would drastically

facilitate �nding a solution and the solution would be simple and elegant. Ex-

periments in this paper aim to discover such specialised functions by starting the

search with more general functions which can de�ne the specialised functions.

In GP practice a typical function set for each of the Monks' problems would

probably, at least, be as shown below in F function sets for each of the problem:

MONK-1: (attribute_1=attribute_2) or (attribute_5=1)

F = { EQUAL, OR, (possibly) TEST-ATTRIBUTE-FOR-A-VALUE }

MONK-2: (attribute_n = 1)

for EXACTLY TWO choices of n (n {1,2,...,6})

F = { EQUAL, TEST-NUMBER-OF-ATTRIBUTE-FOR-A-VALUE, NOT, OR, AND}

MONK-3: (attribute_5 = 3 and attribute_4 = 1) or

(attribute_5 != 4 and attribute_2 != 3)

F = { EQUAL, NOT, OR, AND}

For all of the three problems, I will use only protected division, multiplica-

tion, plus, minus and a squashing function which maps the value of an expression

after it is EVALuted to a value in the range of 1 to 0 (see later discussion).

F* =

The expression: (*I1* - ((*I2* + 1) * 0))

�

@

@R

�

�	

I1

�

�

�	

@

@R

+

�

�	

@

@R

0

I2

8

Figure 1: Tree representation of an expression.

5. If the solution found or su�cient number of generations are created then

stop; if not go to 2.

The initialization technique is randomly generating mathematical expres-

sions. This introduces the least amount of domain speci�c knowledge into the

initial population through the variables used in the expressions. Unlike Koza's

genetic programmingapplied to particular problems there are no domain speci�c

functions. Only four mathematical functions are allowed; addition, subtraction

and multiplication and protected division.

3.2.1 Evaluation

In order to provide a basis to determine the �tness of the expressions, each

generation the expressions are evaluated using Lisp's "EVAL" statement by

instantiating input values for each of the patterns from the training set.

The �tness of an expression is based on its success in learning a speci�c task.

Since the target outputs are in the range of 0 to 1, the values, once obtained

showed the most success, especially in mapping to binary target outputs, was

the following:

if value > 1 return 1

if value < 0 return 0

otherwise return the value

The �tness (success) of the individual expression is computed by testing them

on all training patterns, and dividing the total error by the number of patterns,

subtracting from 1 and multiplying by 100 yielding a �tness percentage between

0 and 100.

The expressions are ranked after each generation according to their success.

Those who are higher in the rank (higher scoring ones) are said to be most

�tting expressions.

3.2.2 Selection

The purpose of selection in GA is to give better opportunity of reproducing

to those members of the population which shows better �tness. For the model

this means to select those expressions with higher scores (beginning part of the

rank) and give them more chance to reproduce.

In the model, parent selection technique for reproduction is normalizing

by using an exponential function taken from Whitley's [12] rank-based selec-

tion technique. The function generates integer numbers from 1 to population

size. The generation of numbers exhibits characteristics of a non-linear function

where there is more tendency to produce smaller numbers (since higher scoring

expressions are on top of the rank).

The function is Z = X�

q

X�X�4�(X�1)�Y

2�(X�1)

The selection algorithm is based

on the X, Y, Z values in the above formula where X is a bias computed as 1+Y

where Y is a random number between 0 and 1. The value of Z lies between 0

and 1 and in the rank-ordered population N the expression at position N �Z is

chosen.

The number produced by this function is used as an index to the ranked

population of expressions from highest scoring ones to the lowest scoring. Then,

after producing two indices by using the selection function the corresponding

expressions are selected to undergo the genetic operators.

3.2.3 Genetic Operators

Applying genetic operators introduces variation to the population of expres-

sions and allows the components (genes) of better performing expressions to

live longer. This creates the necessary environment to cause evolution. In order

to accomplish this it uses two di�erent genetic operators; crossover and muta-

tion. However, implementation of the both of the operators used by the system

9

are di�erent than conventional implementations on bit strings since the length

of expressions is variable.

In order

MONK1 is not tested for binary coding). The parameters of GA include a

The results emphas1
I

contains a relationship among the input variables. Although it is very di�cult to

get a successful performance on such problems, in general, the poor performance

observed here is not solely due to the strategy employed in the experiments.

This is proved to be the case as a result of our control experiment on the parity

problems discussed later in the section. As it will be explained later in the

discussion section, it has a close link with the way GP like practices.

Solution 1) 0.687865 0.745562

(- (- (* *I17* (- *I12* *I6*))) (* (- *I9* *I8*) *I14*))

Solution 2) 0.668543 0.739645

(- (|%| (- (* (+ *I3* *I5*) *I7*))

(- (+ (- (+ *I6* *I11*)) *I16*))))

Evolved Learning Rules for MONK 2 (Original Coding)

0.661737 0.794811

(|%| (- (+ (- 0 *I1*) (- *I2* *I2*)))

(- (- (- (* 2 *I3*) (+ *I5* *I1*))) (+ *I1* *I5*)))

Evolved Learning Rules for MONK 3 (Binary Coding):

0.973482 0.935242

(- (- (* *I12* *I13*) (+ *I6* *I14*)))))

Evolved Learning Rules for MONK 3 (Original Coding)

The learning rule evolved for MONK 3 (original) is the simple but perfect

solution discovered in terms of the functions and random numbers used. Here

the range of random numbers was 10. The rule is easily understandable and

corresponds exactly to the second part of 'OR' in the original learning rule of

MONK 3: attribute �ve is not equal to four and attribute 2 is not equal to 3.

Note that the evolved expression implicitly code for relative more specialised

functions EQUAL, NOT and AND than arithmetical operators. This clearly

demonstrates the power of the model as a potentially useful tool in discovering

learning rules for learning problems. The resulting rules can sometimes be a

complex and totally new representation or simple re-representations.

0.983607 0.935651

(- (* (- *I5* 4) (- *I2* 3)))))

4.1 Parity Problems: a control experiment

In order to test whether the poor result obtained on MONK2 is

The MONK2 and Parity problems are similar in that the learning rule describing

either refers to some kind of relationship among the input variables. The general

rule for parity problems states that the output is true if there are even number

of true values among the input values. As it can be observed from the following

results the model can code for the solutions to the supervised tasks where the

learning rule describes a relationship among the input variables. However, when

the problem gets larger and more complex (5 bit-parity or higher) it becomes

more di�cult for the model to code for the solution. In this case, a larger pop-

ulation size and an increase number of generations as well as longer and more

complex representations of the solutions may be required. For example Koza

in his experiments with even-5-parity problems increased the number of pop-

ulation from 4000 to 8000 to �nd a solution [5]p.533. This is a huge number

compared to our 300 population size and 250 generations.

followings are the results of evolving learning rules for the parity problems.

Note that for each of the problem our �xed set of functions are capable of coding

at least for OR, AND and NOT.

Evolved Learning Rules for 2-Bit-Parity Problem

1.00

(|%| (- (- *I1* *I2*)) (- (- (+ *I1* (- (* *I2* *I2*))) *I2*)))

1.00

(+ (+ *I2* *I1*) (- (* *I2* (+ (- (+ *I1* *I1*)

(- (* *I2* (+ (- *I1* *I2*) *I2*)))) *I1*))))

Evolved Learning Rules for 3-Bit-Parity Problem

1.0

(+ (- (- (- (|%| *I1* (- (* (- (* *I2* *I1*)

(+ *I2* (* *I3* *I1*))) (+

(* (- (+ *I2* *I1*)) *I3*) *I1*))))) (+ (+ (- (* *I1* *I1*)) (*

(- (+ *I2* *I3*)) (- (+ *I1* (+ (- (- *I2* (- (* *I2* *I2*))))

I1))))) *I2*)) (- (- *I1* *I3*) *I1*)) (- (* (- (* (- (+ *I3*

I3) *I3*) (+ (- (|%| *I3* *I2*)) *I1*))) (- (- (- (- *I2* (-

(|%| (+ *I2* *I2*) *I2*)))) *I2*)))))

1.0

(- (+ (- (- (|%| (- (* *I3* *I2*)) (* *I1* (- (|%| (- (+ *I2*

(+ *I1* (* *I1* (|%| *I3* *I3*))))) *I3*)))))

(+ *I2* (- (+ *I1* *I3*))))

(- (* (|%| *I1* (- (+ *I3* *I2*))) (- (- *I2* *I1*) *I1*)))) (|%|

(- (- (- (+ (- (- *I2* *I3*)) (- (- (- *I3* *I3*)) *I2*)) (|%|

(+ (- (- *I1* *I1*)) (- *I2* *I2*)) *I1*)) *I2*)) (- (- (+ *I1*

(* (+ *I1* *I2*) *I2*))) (- (* *I3* *I3*)))))

14

Evolved Learning Rules for 4-Bit-Parity

0.9375

(+ (+ (- (- (+ (+ *I2* (- *I4* (+ (- (* *I3* *I1*)) *I1*)))

(- (- (- (+ (|%| (* *I4* *I1*) *I2*) (- (|%| *I3*

(+ *I2* *I1*))))) (- (* (- (|%| *I4* *I3*)) (- *I2* *I3*))))))

(|%| (- (|%| *I4* (* *I1* (|%| *I1* (+ *I3* *I4*)))))

(* *I3* (+ *I1* *I2*)))) (- (|%| (- (- (* *I3* *I2*) *I3*))

(- (+ (- (|%| *I1* *I3*) *I4*) *I4*) (- (- *I4*

(- (+ (- (- (- (- *I4* *I3*)) *I2*) *I4*) *I2*))))))+

rule is described in terms of relationships among input values. This provides an

additional support in favor of the second hypothesis. Moreover, when the prob-

lem gets larger and more complex (i.e. moving from 3 to 4 bit and higher parity

problems), evolution of successful learning rules becomes more di�cult. As the

complexity and size of the problem increase, the current strategy of encoding

should search for the larger space to �nd the solution. One of the problem comes

from the non-convergent characteristic of GP like methods. When a solution or

a more �t individual is found during the course of the evolution, it can easily

turn to be an un�t individual after the application of crossover. Although, as a

tion about the ability of GP like practices to generalize over the test cases.

Although, recent experiments shows that the model can generalise over simple,

linearly separable problems, there is no clear evidence whether it can succesfully

generalise over hard learning probelms. This issue should be one of the major

concern for the next experiments.

References

[1] D.J. Chalmers. Evolution of learning: an experiment in genetic connection-

ism. In Touretzky et al, editor, Connectionist Models. Morgan Kaufmann,

1990.

[2] A. Clark and C. Thornton. Trading spaces: Computation, representation

and the limits of learning. Technical Report 291, COGS, University of

Sussex, 1993.

[3] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley, Massacheusettes, 1989.

[4] J. Holland. Adaptation in Natural and Arti�cial Systems. University of

Michigan Press, Ann Arbor, USA, 1975.

[5] J. Koza. Genetic Programming:On the programming of computers by means

of natural selection. MIT press, 1992.

[6] Ibrahim Kuscu. Evolution of learning rules for supervised tasks i: Simple

learning problems. Technical Report CSRP-394, Uni. of Sussex, COGS,

1995.

[7] Ibrahim Kuscu. Incrementally learning the rules for supervised tasks:

Monk's problems. Technical Report CSRP-396, Uni. of Sussex, COGS,

1995.

[8] Una-May O'Reilly and Franz Oppacher. An experimental perspective on

genetic programming. In R. Manner and B. Manderick, editors, Proc of 2nd

Intl Conf on Parallel Problem Solving from Nature, pages 331{340, 1992.

[9] D. Rumelhart, G. Hinton, and R. Williams. Learning internal representa-

tions by error propagation. In D. Rumelhart, J. McClelland, and the PDP

Research Group, editors, Parallel Distributed Processing: Explorations in

the Micro-structures of Cognition. Vols I and II. MIT Press, Cambridge,

Mass., 1986a.

[10] C. Thornton. Supervised learning of conditional approach: a case study.

Technical Report 291, COGS, University of Sussex, 1993.

17

[11] S. Bala et al Thrun. The monk's problems - a performance comparison of

di�erent learning algorithms. Technical Report CMU-CS-91-197, School of

Computer Science, Carnegie-Mellon University., USA, 1991.

[12] D. Whitley. The genitor algorithm and why rank based-based allocation

of reproductive trials is best. In J.D. Scha�er, editor, Proceedings of Third

iInternational Conference on Genetic Algorithms, pages 116{123, 1989.

18

